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The singular-value decomposition (SVD) can be used to analyze the matrix of Green
functions relating the acoustic pressure at a number of "eld points to the strengths of
a number of point sources on the surface of a body which radiates or scatters sound. The left
and right singular vectors of the resulting decomposition yield, at a given frequency, two sets
of orthogonal basis functions describing &&"eld mode shapes'' and &&source mode shapes''
respectively. This paper attempts to make the connection between this decomposition and
the basis functions of classical acoustics. In particular, it is found that for a spherical
co-ordinate system, when the source points and "eld points are chosen in order to sample
the source and "eld appropriately, then the matrices of left and right singular vectors are
related to the sampled spherical harmonics by a unitary transformation. Preliminary
investigations are presented of the sensitivity of this relationship to the manner in which the
source and "eld are sampled. In addition, the great utility of the method is illustrated
with some new results of numerical analysis of the scattering of sound by the outer ear.
&&Pinna resonances'' and their associated &&mode shapes'' are identi"ed at certain frequencies
where high values of the dominant singular values indicate a strong coupling between
source and "eld.

( 2001 Academic Press
1. INTRODUCTION

The singular-value decomposition (SVD) has for some years been recognized as a useful
mathematical tool for analyzing problems in sound radiation and scattering. With regard to
sound radiation problems, Borgiotti showed [1] in a very general way that, at a given
frequency, the &&radiation operator'' relating the velocity on the surface of a vibrating body
to the sound pressure produced over a surface in the radiated "eld could be advantageously
decomposed by using a singular function representation. Photiadis [2] also pointed out the
utility of the SVD when the radiation operator involved is a matrix of Green functions
relating a number of points on the surface of the body to a number of points in the sound
"eld. The left and right singular vectors of the SVD of the Green function matrix yield two
sets of basis functions which, respectively, represent a series of mutually orthogonal
complex &&"eld mode shapes'' and mutually orthogonal complex &&source mode shapes''.
Each of the "eld mode shapes is related to only one of the source mode shapes by a single
real number corresponding to the relevant singular value in the SVD. These ideas were
further exploited by Currey and Cunefare [3] and Elliott and Johnson [4], the latter
computing the &&radiation modes'' of a simply supported ba%ed plate. All of these authors
emphasized the fact that the &&source mode shapes'' contribute orthogonally to the total
0022-460X/01/040607#31 $35.00/0 ( 2001 Academic Press
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radiated sound power over the surface considered. The SVD has also been used extensively
in the study of inverse acoustic radiation and scattering problems. For example, Veronesi
and Maynard [5] formulated the source strength reconstruction problem in this way and
the technique has been used in this context by a number of authors (see, for example, Filippi
et al. [6], Kim and Lee [7], Grace et al. [8, 9], Nelson and Yoon [10, 11] and Nelson [12]).
The SVD is of course central to the solution of inverse scattering problems not only in
acoustics, but also, for example, in electromagnetic theory and the reader is referred to the
excellent text by Colton and Kress [13] for an in-depth treatment of these problems.

Of course, the use of a set of orthogonal basis functions for describing acoustic "elds is in
itself a truly classical notion [14}16] and the principal objective of this paper is to explore
further the relationship between the results of the application of the SVD and the
long-established basis functions of classical acoustics. The paper therefore begins by
attempting to further understand the connection between the &&mode shapes'' yielded by the
SVD and the series of spherical harmonics used to describe sound radiation from
a vibrating spherical surface. The study proceeds by re-deriving the Green function for this
problem in terms of the complex spherical harmonics and then using this solution to
compute the Green function matrix relating a number of points on the surface to a number
of points in the far "eld. The results of the SVD of this matrix are then found to be related to
the spherical harmonic basis functions by a unitary transformation and thus the &&mode
shape'' yielded by the SVD for this problem are shown to be linear combinations of
spherical harmonics of a given order.

The paper goes on to explore the e!ect of changing the shape of the radiating body from
a sphere to an ellipsoid. In this case, a boundary element code is used to generate the
relevant Green function matrix and the results illustrate the departure of the &&source mode
shapes'' from the classical spherical harmonics, whilst the singular values are no longer
grouped in spherical harmonic order as is the case for the sphere. Finally, as an illustration
of the great utility of the SVD in analyzing scattering problems, some results are presented
of the numerical simulation of the Green function matrix relating points on the surfaces of
a model of the human pinna mounted on a rigid ba%e and points on a hemisphere in the far
"eld. The resulting SVD yields dominant singular values at certain frequencies and the
associated &&mode shapes'' are found to clearly illustrate the spatial functions identi"ed from
previous experimental studies as those associated with &&pinna resonance'' [17}19].

2. THEORY

2.1. SOLUTIONS OF THE WAVE EQUATION IN SPHERICAL CO-ORDINATES

The scalar Helmholtz equation governing the behaviour of the complex acoustic pressure
p(r) is given by

($2#k2)p (r)"0 (1)

and when written in spherical co-ordinates (r, h, /) becomes
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Since this equation is separable, then assuming a solution of the form p(r)"F (r)G(h)H (/)
yields three ordinary di!erential equations, respectively, governing the radial, polar and
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azimuthal dependence of the acoustic pressure. These are given by [15, 20]
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d2H/d/2#m2H"0, (5)

where C2 and m2 are the separation constants. First note that the solutions of equation (5)
are given by e$+m( where j"J!1, but that m must be a positive or negative integer
(m"0,$1,$22) if the pressure is to be a single-valued function of / (i.e., to ensure that
p(r, h, /#2n)"p(r, h, /)). It can also be argued [20] that for equation (4) to have solutions
that are "nite at h"0 and n then C"n (n#1) where n must be a positive integer
(n"0, 1, 2,2). The solutions of equation (4) when m"0 are given by the Legendre
polynomials P

n
(cos h). For non-zero m, the solution is given by the associated Legendre

polynomials Pm
n

(cos h) de"ned by

Pm
n
(x)"

1

2nn !
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Note that this de"nition (used by Arfken [16]) enables the inclusion of both positive and
negative values of m. Also note that it can be shown that [16]

P~m
n

(x)"(!1)m ( (n!m)!/(n#m)!) Pm
n
(x). (7)

The polar and azimuthal dependences of the pressure are combined in the de"nition of
the spherical harmonics given by [16]
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n
(cos h)e+m(. (8)

These spherical harmonics satisfy the orthogonality condition
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where d
nk
"1 for n"k and d

nk
"0 for nOk and d

ml
is analogously de"ned. It should also

be noted that following Arfken the factor (!1)m has been included and constitutes a phase
term (the &&Condon}Shortley phase'') which has the e!ect of introducing an alternation of
sign among the spherical harmonics corresponding to positive m. Finally, the functions
describing the radial dependence of the acoustic pressure that satisfy equation (3) are given
by the spherical Hankel functions of order n de"ned by
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n
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where j
n
(kr) and n

n
(kr) are, respectively, the spherical Bessel and Neumann functions of

order n. These are in turn related to the Bessel function of order (n#1/2) and Neumann
function of order (n#1/2) by

j
n
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The spherical Hankel functions can also be deduced from [16]

h(1)
n

(x)"!j(!1)nxn A
d

x dxB
n

A
e+x

x B , h(2)
n

(x)"j(!1)nxn A
d

x dxB
n

A
e~+x

x B . (14, 15)

It therefore follows that for n"0, for example,

h(1)
0

(kr)"!je+kr/kr, h(2)
0

(kr)"je~+kr/kr (16a, b)

which de"ne either incoming or outgoing waves depending upon the choice of time
convention.

2.2. RADIATION FROM A POINT SOURCE ON A RIGID SPHERE

The sound "eld produced by a point source situated at a vector position r
0

in an
otherwise unbounded medium is described by the free-space Green function g(r D r

0
) which is a

solution of
($2#k2)g(r Dr

0
)"!d(r!r

0
). (17)

When a harmonic time dependence of e+ut is assumed, the free-space Green function
describing waves propagating outwards from r

0
is given by

g(r D r
0
)"e~+kDr~r

0
D/4n Dr!r

0
D . (18)

This function can be expressed in terms of a series expansion of the spherical harmonics
described above (see, for example, references [16, Chapter 16, p. 768, 14, Chapter 11,
p. 1466], or [15, Chapter 7, p. 352]). This series expansion can be written as
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where r"D r D and r
0
"D r

0
D and * denotes the complex conjugate. This series expansion di!ers

slightly from that given in reference [15] since an e+ut time dependence has been assumed and
thus h(2)

n
(kr) has been used in place of h(1)

n
(kr). See also reference [13, Chapter 2, p. 30] for

a rigorous proof of this relationship. As shown by Morse and Ingard [15, Chapter 7, p. 355]
this series expansion can be used to construct the Green function G(r D r

0
) describing radiation

from a point source on the surface of an otherwise rigid sphere. Formally speaking, this is
accomplished by adding to g(r D r

0
) a further function s(r) which satis"es the homogeneous

Helmholtz equation ($2#k2)s(r)"0 and which ensures that the radial gradient of the sum
of g(r Dr

0
) and s(r) is zero at the surface of the sphere. Following Morse and Ingard [15], the

Green function satisfying these conditions can be written as
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where a is the radius of the sphere and the prime denotes di!erentiation with respect to the
argument.
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The inhomogeneous Helmholtz equation given by

($2#k2)p(r)"!Q
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0
), (21)

where Q
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) represents some volume source distribution, has the general solution
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where S is the surface with unit outward normal vector n that bounds the volume
< containing the "eld point r, and $

0
is the gradient operator with respect to the co-ordinates

de"ned by r
0
. Since G(r Dr
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) given by equation (20) has been chosen to satisfy $

0
G(r Dr

0
)n"0

on the surface of the sphere, and if there are no other sources within <, then

p(r)"P
S

G(r D r
0
)$

0
p(r

0
) .n dS, (23)

where the integration is carried out only over the surface of the sphere. (The other part of S is
that part of the surface bounding the volume< outside the sphere and thus lies at in"nity; the
contribution to the surface integral from this part of S can be shown to zero by virtue of the
Sommerfeld radiation condition [15]). If the sphere is now assumed to have an arbitrary
radial velocity distribution $
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It therefore follows that the expression for the pressure "eld generated by an arbitrary
surface velocity distribution can be written as
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where the factor;m
n

accounts for the degree to which a given spherical harmonic is driven by
a given velocity distribution and is de"ned by
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If the velocity distribution is now assumed to be that associated with a point source of
strength q(r( ) at (hK , /K ) where
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sStrictly speaking the matrix G (r Dr( ) is a matrix of transfer impedance relating pressure to volume velocity.

Note that in evaluating the derivative h(2){
n

(ka) one may make use of the result [16]
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(x)!(n#1)j
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and an exactly analogous expression for n@
n
(x).

2.3. THE SINGULAR-VALUE DECOMPOSITION

Now assume that for a given linear acoustic problem it is possible to specify a matrix G(r Dr( )
of Green functionss relating the pressures produced at a number of "eld points speci"ed by
the position vector r to the strengths of a number of point sources at positions speci"ed by the
position vector r( . That is to say,

p(r)"G(r Dr( )q(r( ), (30)

where p(r) is the vector whose elements de"ne the respective "eld pressures and q(r( ) is the
vector whose elements de"ne the source strengths. It will now be demonstrated that the
singular-value decomposition (SVD) of the matrix G(r Dr( ) provides an extremely useful basis
for understanding acoustic radiation and scattering problems, especially those associated with
&&complicated'' (non-separable) geometries.

The SVD enables any arbitrary complex matrix G(r D r( ) of order (K]¸) to be expressed as

G(r Dr( )"URVH, (31)

where R is the (K]¸) matrix whose entries are zero apart from the diagonal elements p
i

which comprise the singular values of G(r D r( ). The superscript H denotes conjugate transpose.
If R is the rank of G(r Dr( ) then the singular values satisfy

p
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The matrices U and V are, respectively, of dimension (K]K) and (¸]¸) and are unitary
matrices having the orthogonality properties

UHU"UUH"I, VHV"VVH"I. (33a, b)

The columns u
i
of the matrix U and the columns v

i
of the matrix V, respectively, de"ne the left

and right singular vectors of G(r Dr( ). The signi"cance of the singular vectors is that they
provide sets of orthogonal basis functions for describing the spatial variation in radiated
pressure and their relationship to spatial variations in source strength. Speci"cally, it follows
from equations (30) and (31) that

p(r)"URVHq(r( ) (34)

and since by virtue of equation (33a), U~1"UH, then this expression may be written as
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This demonstrates that a speci"c spatial pattern in the radiated "eld de"ned by uH
i
p (r) is

linearly related to a speci"c spatial pattern of source strength distribution de"ned by vH
i
q (r( ).

These two patterns are related by the singular value p
i
.

2.4. ALTERNATIVE FORMS OF THE GREEN FUNCTION MATRIX

There is also a close relationship between the singular-value decomposition and the series
expansions used in the analyses of acoustical problems in separable co-ordinate systems. In
particular, this close relationship can be demonstrated for the case of spherical radiation
expressed in terms of a series of spherical harmonics. First note that the SVD of the Green
function matrix can be expressed in terms of the left and right singular vectors such that
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where the matrix is shown to consist of a linear superposition of P component matrices each
de"ned by the outer product u

i
vH
i

and weighted in the summation by the singular value p
i
.

Now note that one may use equation (29) to de"ne the elements of the Green function
matrix G(r D r( ) relating the acoustic pressure at K points in the sound "eld to the source
strength at ¸ points on the surface of a sphere. This matrix can be written in the form
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where it follows from equation (29) that
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Since each term in the series comprising each element of the matrix is weighted by the same
factor f
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, it is possible to write the matrix as a linear superposition of matrices having the

form
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There are some obvious similarities between the singular-value decomposition expressed
in the form of equation (37) and the matrix series given by equation (40). The vector ym

n
(r
k
)
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has elements which correspond to the values of the (n, m)th spherical harmonic at each of
the points in the radiated "eld at which the pressure is evaluated. The vector ym

n
(r(
l
) has

corresponding elements at each of the points on the surface of the sphere at which the
source strength is evaluated. The vectors ym

n
(r
k
) thus de"ne the basis functions for the

pressure "eld in much the same way as the vectors u
i
. Similarly, the vectors ym

n
(r
k
) de"ne the

basis functions for the source strength distribution in an analogous manner to the vectors v
i
.

One should note, however, that one would not necessarily expect an exact correspondence
between the matrix series given by equation (40) and the SVD in equation (37). Most
obviously, the weighting factors di!er in that the singular values p

i
are purely real whilst the

coe$cients f
n

are in general complex. Furthermore, the matrix series in equation (40) is
in"nite, whilst the matrix series representation of the SVD is "nite and consists of
P"min(K, ¸) terms.

However, there is a connection between the two descriptions of the Green function
matrix. Note that if one chooses to represent the Green functions in equation (38) as a sum
up to a maximum number of n"N spherical harmonics, then the truncated Green function
matrix G

N
(r D r( ) can be expressed as the matrix product
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function matrix can be expanded as
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Now note that it may be shown that as K, ¸PR, then the matrices Y(r
k
) and Y(r(

l
) become

unitary matrices. For example, the diagonal elements of the matrix YH (r
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terms given by
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The orthogonality property of the spherical harmonics given by equation (9) shows that
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The term sin h dh d/ can be regarded as an element of area of a sphere of unit radius, and if
the K points at which the spherical harmonics are sampled are at the centres of segments of
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equal area, the integral in equation (47) can be expressed as the summation

K
+
k/1

DYm
n
(h, /) D2DS

k
"1. (47)

Since DS
k
"4n/K, then it follows that the summation in equation (45) will tend to a value of

K/4n ad KPR. By an exactly analogous argument, it is evident that the orthogonality
property of the spherical harmonics results in the o!-diagonal terms of the matrix
YH (r

k
)Y(r

k
) tending to zero as KPR. It is thus concluded that

YH (r
k
)Y (r

k
)"(K/4n)I as KPR (48)

and similarly that

YH(r(
l
)Y(r(

l
)"(¸/4n)I as ¸PR. (49)

2.5. THE SINGULAR-VALUE DECOMPOSITION AND THE SPHERICAL HARMONICS

It will be demonstrated by the numerical simulations presented below that there is
indeed, under certain circumstances, a direct connection between the results of the singular
value decomposition of the Green function matrix and the matrices Y(r

k
) and Y(r(

l
) of

sampled spherical harmonics. Speci"cally, it will be demonstrated that when Y(r(
l
) and Y(r

k
)

can be regarded as unitary matrices, such that equations (48) and (49) hold to a good
approximation, then one may write

U
N
"Y(r

k
)T(r

k
), V

N
"Y(r(

l
)T(r(

l
). (50a, b)

The matrices U
N

and V
N

comprise the left and right singular vectors associated with the "rst
N singular values which, if the SVD is taken of the truncated Green function matrix G

N
(r D r( ),

are the only non-zero singular values. The matrices U
N

and V
N

are found to be linear
combinations of the sampled spherical harmonics. The matrices T (r

k
) and T (r(

k
) e!ectively

specify the combinations of the columns of Y (r
k
) and Y(r(

l
), respectively, that must be added

to produce the columns of U
N

and V
N
. In fact, the left and right singular vectors are found to

be linear combinations of sampled spherical harmonics of a certain order n, and this results
in the matrices T (r

k
) and T (r(

l
) having a certain block diagonal structure. Furthermore, since

U
N

and V
N

are unitary, and when Y(r
k
) and Y (r;

l
) are unitary, then both T(r

k
) and T (r;

l
) must

be unitary. This follows since from equations (50a) and (33a)
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and when YH (r
k
)Y(r

k
)"(K/4n)I, then it follows that TH(r

k
)T(r

k
)"(4n/K)I. Similarly,

TH (r(
l
)T(r(

l
)"(4n/¸)I. Thus, it follows from equations (50a, b) that the SVD of the Green

function matrix given by equation (31) can be written as

G
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where R
N

is the diagonal matrix of the N non-zero real singular values. It is also evident
from equation (44) therefore that the diagonal matrix F of the complex amplitudes of the
spherical harmonics is given by

F"T (r
k
)R

N
TH (r(

l
). (53)
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These "ndings are con"rmed by the results of the numerical simulations presented below. It
will also be shown that for these results to hold, that it is vital that the points on the surface
of the sphere and the points on the surrounding spherical surface are sampled at the centres
of segments of equal area. This ensures the orthogonality of the columns of the matrices
Y(r

h
) and Y(r(

l
).

3. NUMERICAL SIMULATIONS BASED ON THE ANALYTICAL MODEL
OF RADIATION FROM A SPHERE

3.1. COMPUTATIONAL MODEL

The Green function given by equation (29) was used in order to construct the matrix
of Green functions relating sources placed at 32 points on the surface of a rigid sphere of
radius 0)1 m to 32 points on a surrounding far"eld spherical surface of radius 10 m. The
number of points chosen enabled both spherical surfaces to be divided into 60 segments of
equal area as illustrated in Figure 1. A number of terms given by n"4 was used in the
spherical harmonic series expansion used in the Green function resulting in a total number
of N"25 terms in the series. It was assumed that o

0
c
0
"411)4 Rayls. The SVD of this

matrix was undertaken using the &&SVD'' routine in MATHEMATICA [21] and yielded
only 25 signi"cant singular values p

i
. The number of singular values found was thus equal

exactly to the total number of terms in the spherical harmonic expansion (i.e., one term
corresponding to n"0, three terms corresponding to n"1, "ve terms corresponding to
n"2, seven terms corresponding to n"3 and so forth). The remaining singular values were
smaller than a factor of 10~10 times the smallest signi"cant singular value at a value of ka of
0)1. A plot of the variation of the dominant 16 non-zero singular values as a function of ka
is shown in Figure 2. It is clear that the singular values are grouped in spherical harmonic
order with the largest singular value corresponding to n"0, the next three corresponding
to n"1, the next "ve corresponding to n"2 and the next seven corresponding to n"3.
The real part of the singular vector corresponding to n"0, 1 and 2 which are given by the
Figure 1. A spherical surface sampled at 32 uniformly distributed points. The points used are at the vertices of
the triangular mesh elements.



Figure 2. The singular values of the analytically generated 32]32 Green's function matrix relating points on
the surface of a rigid sphere of radius a to points on the surface of a far"eld surface of radius 100a. Both spherical
surfaces are sampled using the mesh illustrated in Figure 1: *s* , p

1
; *j*, p

2
Pp

4
; *q*, p

5
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9
; **,

p
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columns u
i
are shown as a surface colour map in Figure 3(a). These plots clearly show the

&&monopole-like'', &&dipole-like'' and &&quadrupole-like'' nature of the singular vectors
associated, respectively, with spherical harmonic orders corresponding to n"0, 1, 2. (Note
however, as discussed in detail by Morse and Ingard [15, see Chapter 7, p. 346], the sound
"elds associated with the multipole expansion are not simply related to the spherical
harmonics; the quadrupole "eld for example consisting of a combination of spherical
harmonics of order n"2 and a monopole "eld). For comparison, the real and imaginary
parts of the spherical harmonics corresponding to n"0, 1 and 2 are shown in Figures 3(b)
and 3(c) respectively. Clearly, the spatial patterns involved are very similar to those of the left
singular vectors, although the relationships between them are not obvious from the "gures.

3.2. CALCULATION OF THE UNITARY TRANSFORMATION MATRICES

A check was undertaken on the unitary nature of the matrices Y(r
k
) and Y(r(

l
) as de"ned

in equation (43) at a value of ka"0)1. These matrices of sampled spherical harmonics were
found, for the sampling geometry illustrated in Figure 1, to be unitary to an extremely good
approximation. The matrices YH (r

k
)Y(r

k
) and YH(r(

l
)Y(r(

l
) were found to be given by (K/4n)I

and (¸/4n)I, respectively, to a very good accuracy although the maximum diagonal term
exceeded the theoretical value by 3)7%. The maximum o!-diagonal term was 3% of the
theoretical value of the diagonal terms. The elements of the matrix YH (r

k
)Y (r

k
) are shown

on a grey-scale plot in Figure 4. It is interesting to note, however, that the sum of the
diagonal terms in these matrices was exactly equal to the theoretical value. Similarly,
the sum of the o!-diagonal terms was a factor 10~5 smaller than the theoretical value of the
diagonal terms.



Figure 3. Three-dimensional colour maps illustrating (a) the variation over the far"eld sphere of the real part of
the left singular vectors of the analytically generated 32]32 Green's function matrix (the plots shown correspond
to the nine most dominant singular values), (b) the real part of the spherical harmonics evaluated over the same
spherical surface, (c) the corresponding imaginary parts of the spherical harmonics. The values in each row were
normalized to $1: #1 red, !1 blue.
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The matrices T (r
k
) and T(r(

l
) were then calculated. Since there were only n"4 terms in the

spherical harmonic series expansion and thus only 16 non-zero singular values, only the
"rst N"16 columns of the matrices U and V were used in SVD expansion of the matrix
G

N
(r D r( ). Thus,

G
N
(r D r( )"U

N
R
N
VH

N
(54)

and the unitary transformation matrices are de"ned using equations (50a, b).
Pre-multiplication of these equations, respectively, by YH(r

k
) and YH (r(

l
) then shows that

T(r
k
)"(4n/K)YH (r

k
)U

N
, T(r(

l
)"(4n/¸)YH(r(

l
)V

N
. (55a, b)



Figure 4. A grey-scale plot of the values of the real parts of the elements of the matrix Y (r
k
)HY(r

k
), where the

values of r
k

chosen correspond to 32 uniformly distributed points on the sphere.
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The results of these computations are shown in Figures 5 and 6 which show both the real
and imaginary parts of these two matrices and their block diagonal structure. Note that the
blocks of terms in these matrices are arranged in accordance with spherical harmonic order
n, with submatrices of dimension 1]1, 3]3, 5]5 and 7]7 appearing in diagonal blocks.
This in turn implies that the "rst left and right singular vectors are equal to the "rst columns
of the matrices Y(r

k
) and Y(r(

l
), respectively (i.e., corresponding to the n"0 spherical

harmonic), whilst the second, third and fourth singular vectors are linear combinations of
the second, third and fourth columns of Y(r

k
) and Y(r(

l
) corresponding to the n"1 spherical

harmonics, and so forth. A plot of the elements of the matrix T(r
k
)HT(r

k
) is shown in

Figure 7 which con"rms the unitary structure of the matrix T (r
k
).

Finally, a check was undertaken to ensure that the matrix R
N

of singular values was
related to the matrix F of complex spherical harmonic amplitudes through the relationship
F"T(r

k
)R

N
TH (r(

l
). It was found that this relationship holds to an excellent approximation.

Figure 8 shows on a logarithmic scale the elements of ReMT(r
k
)R

N
TH(r

l
)N computed from

this expression. The results are in agreement with those deduced from the analytical
solution to within the precision of the numerical calculation.

3.2. SENSITIVITY TO CHOICE OF MESH

A further set of numerical simulations were undertaken that were based on the above
analytical model, but with non-uniformly sampled spherical surfaces. The surface mesh used
is illustrated in Figure 9. This form of sampling was applied both on the surface of the rigid
sphere and on the far"eld surface. In this case, the matrices Y(r

k
) and Y (r(

l
) were no longer

found to be unitary. A plot showing the real part of YH (r
k
)Y(r

k
) is shown in Figure 10 which

demonstrates that although the diagonal terms are still dominant, the diagonal terms are
a maximum of 19)1% above the theoretical value, although their sum is again exactly equal



Figure 5. A grey-scale plot of the (a) real and (b) imaginary parts of the elements of the matrix T(r
k
) associated

with the analytically generated 32]32 Green's function matrix.
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to the theoretical value. The o!-diagonal terms are a maximum of 24)7% of the theoretically
predicted diagonal terms. However, the sum of the o! diagonal terms was 0)05% of the
theoretically predicted values of the diagonal terms. Similarly, plots of the real and
imaginary parts of T(r

k
) for this case are shown in Figure 11 and a plot of the real part of

T(r
k
)HT(r

k
) is shown in Figure 12. Also a plot of the real part of the matrix product

T(r
k
)R

N
TH (r(

l
) is shown in Figure 13. In this case, the agreement with the results for the

analytical solution for ReMFN is far less good.



Figure 6. A grey-scale plot of the (a) real and (b) imaginary parts of the elements of the matrix T(r(
l
) associated

with the analytically generated 32]32 Green's function matrix.
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A plot of the 20 dominant singular values is shown in this case as a function of ka in
Figure 14. Again n"4 terms were used in the spherical harmonic series and 25 dominant
singular values were yielded by the SVD. The smallest singular values were again found to
be a factor 10~9 times the smallest dominant singular value. However, it is clear that the
singular values are no longer grouped in spherical harmonic order as convincingly as the



Figure 7. A grey-scale plot of the real parts of the elements of the matrix T(r
k
)HT(r

k
) associated with the

analytically generated 32]32 Green's function matrix.

Figure 8. A grey-scale plot (on a logarithmic scale) of the real parts of the elements of the matrix T(r
k
)R

N
T(r;

l
)H

associated with the 32]32 analytically generated Green's function matrix.
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case with perfectly uniform sampling of the "eld. This therefore illustrates the sensitivity
of the choice of mesh to the relationship between the &&source modes'' and &&"eld
modes'' comprising the columns of V and U and which is quanti"ed by the relevant singular
value.



Figure 9. A spherical surface sampled with an approximately uniform distribution of 56 points. The points used
are at the vertices of the quadrilateral mesh elements.

Figure 10. A grey-scale plot of the values of the real parts of the elements of the matrix Y(r
k
)HY(r

k
) where the

values of r
k

chosen correspond to 56 points distributed on the far "eld of a sphere in the manner illustrated in
Figure 9.
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4. NUMERICAL SIMULATION BASED ON THE BOUNDARY ELEMENT METHOD

4.1. BOUNDARY ELEMENT SOFTWARE

The numerical simulations undertaken below were undertaken using the SYSNOISE
software package [22] which uses the boundary element method in order to compute
numerically the solution of the homogeneous Helmholtz equation. This is given by equation



Figure 11. A grey-scale plot of the (a) real and (b) imaginary parts of the elements of the matrix T(r
k
) associated

with the analytically generated 56]56 Green's function matrix.
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(22) which when using the free-space Green function g (r D r
0
) reduces to

p (r)"P
S

[g (r D r
0
)$

0
p (r

0
)!p (r

0
)$

0
g (r D r

0
)] .n dS (56)

which is the Kirchho!}Helmholtz integral equation. SYSNOISE "rst solves the integral
equation for the surface pressure p(r

0
). Full details are given in reference [22].



Figure 12. A grey-scale plot of the real parts of the elements of the matrix T(r
k
)HT (r

k
) associated with the

analytically generated 56]56 Green's function matrix.

Figure 13. A grey-scale plot (on a logarithmic scale) of the real parts of the elements of the matrix T(r
k
)R

N
T(r;

l
)H

associated with the analytically generated 56]56 Green's function matrix.
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As an initial veri"cation of the software, a numerical solution was computed for the case
of the sphere whose surface was sampled as illustrated in Figure 15. The SVD of the
resulting Green function matrix was then undertaken and calculated using MATLAB [23].
The results are illustrated in Figure 16. The agreement with the results for the



Figure 14. The singular values of the analytically generated 56]56 Green's function matrix relating points on
the surface of a rigid sphere of radius a to points on the surface of a far "eld surface of radius 100a. Both spherical
surfaces were sampled using the mesh illustrated in Figure 9.
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sphere sampled as shown in Figure 9 was found to be excellent (compare Figure 16 with
Figure 14).

4.2. THE SOURCE AND FIELD MODE SHAPES OF AN ELLIPSOID

As a further illustration of the utility of the SVD in analyzing numerical solutions, another
numerical simulation was undertaken using SYSNOISE in order to deduce the &&"eld mode
shapes'' and &&source mode shapes'' associated with an ellipsoid and a far"eld spherical surface.
The ellipsoidal geometry illustrated in Figure 17 was used and the far"eld sphere was sampled
using the same geometry as that illustrated in Figure 5. Although not shown here, the mode
shapes associated with both source and "eld were very similar to those computed in the case
of a sphere, with essentially the same groups of patterns appearing in the left and right
singular vectors. However, as illustrated more clearly by the behaviour of the singular values
shown in Figure 18, there were subtle departures from the behaviour seen in the case of
a sphere. Most notably, the groups of spherical harmonic orders become more spread as the
individual singular values depart more from the frequency dependence found with the sphere.
In view of the evident sensitivity of the results shown above to the choice of mesh, it is di$cult
at this stage to be sure to what extent the basic change of geometry in#uences the results of the
SVD. These uncertainties clearly warrant further investigation.

4.3. THE SOURCE AND FIELD MODE SHAPES OF A BAFFLED PINNA

As a "nal illustration of the great potential of the SVD for analyzing acoustic scattering
problems, numerical simulations were undertaken using SYSNOISE in order to deduce the



Figure 15. A spherical surface sampled at 152 approximately uniformly distributed points. The points used are
at the vertices of the quadrilateral elements.

Figure 16. The singular values of the numerically generated 152]152 Green's function matrix relating points
on the surface of a rigid sphere of radius a to points on a far"eld spherical surface of radius 100a. Both spherical
surfaces were sampled using the mesh illustrated in Figure 15.
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matrix of Green functions relating a number of points on the surface of an outer ear (pinna)
mounted on an in"nite rigid ba%e and a number of points on a surrounding far"eld
hemispherical surface. The pinna chosen was the DB60 pinna associated with the KEMAR
dummy head [24]. The computational mesh used was generated by a laser scanning
technique "rst employed for this purpose by Katz [25] and described in detail by Kahana
[26]. The mesh used in the computation consisted of 2825 nodes whilst the far"eld
hemisphere was sampled by using 209 nodes.



Figure 17. An ellipsoidal surface sampled at 152 approximately uniformly distributed points. The points used
are at the vertices of the quadrilateral elements. The ellipsoid has semi-axes of dimensions a

x
"9)6 cm, a

y
"7)9 cm,

a
z
"11)6 cm.
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The SVD of the resulting Green function matrix was undertaken at a number of discrete
frequencies between 2 and 15 kHz. The frequency dependence of the resulting singular
values is illustrated in Figure 19. This highlights the behaviour of the "rst three dominant
singular values and also shows the frequency dependence of the next seven largest singular
values. The most signi"cant feature of these results is the manner in which the dominant
singular value exhibits peaks in amplitude at certain frequencies. It has been found that the
corresponding left and right singular vectors also exhibit distinctive spatial patterns at these
frequencies.

Figure 20(a) illustrates the real and imaginary parts of the left and right singular
vectors associated with the dominant singular value at the frequency of 4600 Hz which is
the left-most peak frequency in Figure 19. This peak in the coupling between the "eld in the
region of the pinna and points in the far "eld appears to be related to the &&concha
resonance' identi"ed in previous studies [17] of the outer ear response. Although not as
sharp as the peak of 4600 Hz, the dominant singular value exhibits a broader peak of lower
amplitude centred at about 8800 Hz. Figure 20(b) shows the &&mode shape'' associated with
the pinna at this frequency. This appears to involve a dipole-like response, with the dipole
axis in the vertical direction and involving oscillatory #ow between the concha and the
antihelix. The next sharp peak at 10 300 Hz has the associated mode shapes illustrated in
Figure 20(c). This appears to be linked to a longitudinal quadrupole-like response in the
vertical direction and appears to involve oscillatory #ow between the concha, antihelix and
fossa of helix. It should also be noted that the next dominant singular value (p

2
) also has

a peak close to their frequency. This mode shape is illustrated in Figure 20(d) and is again
dipole-like with a horizontal axis and involves oscillating #ow. Finally, the right-most peak
occurring in Figure 19 is at about 13 800 Hz and appears to involve a quadrupole-like
motion which consists of both a horizontal dipole within the concha and vertical dipole.
These mode shapes are shown in Figure 20(e).



Figure 18. The singular values of numerically generated 152]152 Green's function matrix relating points on
the surface of a rigid ellipsoid (distributed as shown in Figure 17) to points on the surface of a far"eld sphere of
radius 104a

x
(distributed as shown in Figure 15).
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5. DISCUSSION

It is evident from the results presented above that the SVD provides an extremely useful
tool for the analysis of the results of numerical analyses of acoustical problems. The clear
connection has been made between the classical methods of acoustics which use a series of
orthogonal basis functions for describing the spatial characteristics of a sound "eld and the
results of the SVD. In the case of the uniformly sampled spheres, the left and right singular
vectors were found to be related to the spherical harmonics by a unitary transformation. It
is worth pointing out that both Borgiotti [1] and Photiadis [2] identi"ed the right singular
vectors as being closely related to the spherical harmonics used in describing the source
distribution. This identi"cation was made by both authors in noting that the total power
radiated could be expressed in a certain diagonal form. Photiadis [2] for example, pointed
out that &&up to a phase, the source and radiation modes are the spherical harmonics''. In the
context of the work presented here, the total acoustic power radiated to the far "eld can be
expressed as

="

K
+
k/1

Dp (r
k
) D2

2o
0
c
0

DS"
DS

2o
0
c
0

pH (r
k
)p (r

k
), (57)

where DS represents the area of equal area segments with which the far "eld is sampled.
Substitution of the expression for the Green function matrix represented in terms of
N spherical harmonics then shows that
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0
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N
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q(r(
l
). (58)



Figure 19. The singular values of the numerically generated 2825]209 Green's function matrix relating
2825 points on the surface of the DB60 KEMAR pinna mounted on a rigid ba%e to 209 points distributed
approximately uniformly on a far"eld hemisphere of radius 3 cm. The calculation is undertaken at 66 frequencies.
*]*]*, p

1
; s>s, p

2
; hh*h, p

3
. The next seven largest singular values are shown unlabelled.
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Since V
N
"Y (r(

l
)T (r;

l
) and since F"T(r

k
)R

N
TH (r;

l
), it is readily shown that this expression

can also be written as
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Comparison of equations (58) and (59) thus shows that it is tempting to identify the diagonal
matrix of squared singular values RH

N
R

N
with the diagonal matrix of squared terms given by

FHF. Similarly, it is natural to identify the matrix V
N

of right singular vectors with the
matrix of sampled spherical harmonics given by Y (r(

l
). The analysis presented above shows

that this is not quite the case, in view of the existence of the unitary transformation.
Nevertheless, the essential physical principles described by both Borgiotti and Photiadis
remain valid and in fact the existence of the unitary transformation can be anticipated
directly from the results derived by these authors.

It should be also noted, however, that the spherical harmonic series enables the sound
"eld in the case of uniformly sampled spheres to be described in terms of frequency-
independent spatial basis functions. Thus, the expression for the Green function given by
equation (29), for example, encapsulates the frequency dependence of the sound radiation
process within the terms h(2)

n
(kr)/h(2)

n
(ka) which clearly do not have a dependence on h and

/. It is therefore possible, for example, to calculate the time domain response of the system
through Fourier transformation of these terms and yet still describe the system response
spatially within the series of spherical harmonics. It is not clear that this is possible when
using the basis functions provided by the SVD for an arbitrary geometry. The frequency
dependence of these basis functions is a matter of current investigation.

Turning to the analysis of the numerically computed results for the ba%ed pinna, these
appear to be highly plausible and in reasonable agreement with the previously measured
acoustical characteristic of the outer ear [17}19]. Thus, for example, Shaw [17] suggests



Figure 20. The (i) real (ii) imaginary parts of the right singular vectors and (iii) real (iv) imaginary parts of the left
singular vectors associated with the dominant singular values of the numerically generated 2825]209 Green's
function matrix for the DB60 KEMAR pinna at (a) 4800 Hz [p

1
], (b) 8800 Hz [p

1
], (c) 10300 Hz [p

1
], (d) 10300 Hz

[p
1
], (e) 13800 Hz [p

1
].
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that there is a &&unidirectional'' resonance of the concha at a frequency which, on average, is
about 4200 Hz. The dominant singular value for the DB60 pinna analyzed above has a peak
at about 4600 Hz which indeed corresponds to a basis function of the pinna which includes
a uniform response of the concha (see Figure 20(a)). However, from the associated basis
function evaluated on the surrounding far"eld hemisphere, there would appear to be at least
some directionality associated with this response.



Figure 20. continued
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Similarly, Shaw [17] suggests that there is a strong &&vertical'' dipole-like resonance
on average at about 7100 Hz and this is indeed exhibited clearly by the results shown in
Figure 20(b) for the dominant basis functions at 8800 Hz. However, in this case, the
dipole-like motion appears to involve not only the concha but a combination of the concha
and the antihelix. The corresponding far"eld basis functions also show a predominant
directivity in the vertical direction. Shaw suggests that the third mode consists of



Figure 20. continued
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a &&horizontal'' dipole-like resonance at about 9600 Hz on average and indeed a horizontal
dipole is observed in the numerical results for the second-most dominant singular value at
10 300 Hz (see Figure 20(c)). The dominant singular value at this frequency however (see
Figure 20(d)) exhibits a basis function which is more akin to a vertically oriented
longitudinal quadrupole. Finally, the results presented here suggest that the next most
signi"cant mode is quadrupole-like and at a frequency of 13 800 Hz (Shaw observed more



Figure 20. continued
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complex modes of this type at, on average, 12 100 and 14 400 Hz). It should be noted that
one would not expect to get exactly the same &&resonance frequencies'' as those found by
Shaw since his resonance frequencies were found by exciting the pinna only at grazing
incidence and with a &&near-"eld'' spherical source. Our spatial basis functions are based on
excitations from the whole hemisphere, and near-"eld e!ects are eliminated. In addition, it



Figure 20. continued
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is important to emphasize that, in arriving at his results, Shaw averaged the response over
10 human pinnae. It is not clear if all of the six modes that were identi"ed by Shaw exist or
have similar patterns for each individual pinna since these have not been included in his
publications. For example, in a recent study undertaken by the authors, it was found that all
six modes indeed appeared in a larger ear (DB65) with similar frequencies to those stated by
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Shaw. Since di!erences appear between male and female pinnae, where for the latter higher
resonance frequencies occur, it is not certain if the results presented here should necessarily
coincide with the average values found by Shaw.

Finally, it should be re-emphasized that the results produced will necessarily be
signi"cantly dependent on the geometrical details of individual pinnae. To date, a total of
six di!erent pinnae have been analyzed using the procedure described above and at least the
basic patterns of response exhibited by the DB60 are replicated by other ears. However, the
associated frequencies of peak response di!er by typically 20% and again this is consistent
with the results of experimental studies [17}19]. Nevertheless, it does seem possible to build
a &&reduced order model'' of the pinna frequency response by using only a relatively small
number of the dominant singular values and their associated basis functions.

6. CONCLUSIONS

A number of numerical simulations have been undertaken in order to examine the
connection between the basis functions provided by the singular-value decomposition of
matrices of acoustic transfer functions and the basis functions provided by classical
acoustical analyses. In particular, it has been found that for radiation from the surface of
a sphere to a spherical surface in the far "eld, the left and right singular vectors associated
with the SVD are related to the sampled spherical harmonics by a unitary transformation.
This relationship is contingent on the source and "eld being sampled by dividing the
spherical surfaces involved into segments of equal area. The relationship is found not to
hold for non-uniform sampling of the surfaces involved.

Some preliminary results have also been presented of the use of the SVD in analyzing the
scattering of sound by the human pinna. It is found that the dominant singular value peaks
at certain frequencies at which the left and right singular vectors exhibit distinctive spatial
patterns. These patterns appear to be connected to the &&mode shapes'' identi"ed in previous
experimental studies of &&pinna resonance''. The phenomena identi"ed await further
investigation.

This paper is dedicated to Professor Philip E. Doak on the occasion of his 80th birthday.
The "rst author (PAN) remains deeply grateful to &&PED'' for teaching him theoretial
acoustics as an MSc. student, for supervising his PhD studies of aerodynamic sound and for
his continued friendship and support. The authors also hope that he will approve of their
attempt to make some useful connections between &&classical acoustics'' and modern-day
numerical methods.
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